U-substitution in definite integrals is just like substitution in indefinite integrals except that, since the variable is changed, the limits of integration must be changed as well. If you don’t change the limits of integration, then you’ll need to back-substitute for the original variable at the end.

Read MoreThere are three ways to solve systems of linear equations: substitution, elimination, and graphing. Substitution will have you substitute one equation into the other; elimination will have you add or subtract the equations to eliminate a variable; graphing will have you sketch both curves to visually find the points of intersection.

Read MoreMost integrals need some work before you can even begin the integration. They have to be transformed or manipulated in order to reduce the function’s form into some simpler form. U-substitution is the simplest tool we have to transform integrals.

Read More